616 research outputs found

    An Optimization Approach to Weak Approximation of Lévy-Driven Stochastic Differential Equations

    Full text link
    We propose an optimization approach to weak approximation of Lévy-driven stochastic differential equations. We employ a mathematical programming framework to obtain numerically upper and lower bound estimates of the target expectation, where the optimization procedure ends up with a polynomial programming problem. An advantage of our approach is that all we need is a closed form of the Lévy measure, not the exact simulation knowledge of the increments or of a shot noise representation for the time discretization approximation. We also investigate methods for approximation at some different intermediate time points simultaneously

    Transduction of artificial transcriptional regulatory proteins into human cells

    Get PDF
    Protein transduction (PT) is a method for delivering proteins into mammalian cells. PT is accomplished by linking a small peptide tag—called a PT domain (PTD)—to a protein of interest, which generates a functional fusion protein that can penetrate efficiently into mammalian cells. In order to study the functions of a transcription factor (TF) of interest, expression plasmids that encode the TF often are transfected into mammalian cells. However, the efficiency of DNA transfection is highly variable among different cell types and is usually very low in primary cells, stem cells and tumor cells. Zinc-finger transcription factors (ZF-TFs) can be tailor-made to target almost any gene in the human genome. However, the extremely low efficiency of DNA transfection into cancer cells, both in vivo and in vitro, limits the utility of ZF-TFs. Here, we report on an artificial ZF-TF that has been fused to a well-characterized PTD from the human immunodeficiency virus-1 (HIV-1) transcriptional activator protein, Tat. This ZF-TF targeted the endogenous promoter of the human VEGF-A gene. The PTD-attached ZF-TF was delivered efficiently into human cells in vitro. In addition, the VEGF-A-specific transcriptional repressor retarded the growth rate of tumor cells in a mouse xenograft experiment

    Nicotinamide Protects against Ethanol-Induced Apoptotic Neurodegeneration in the Developing Mouse Brain

    Get PDF
    BACKGROUND: Exposure to alcohol during brain development may cause a neurological syndrome called fetal alcohol syndrome (FAS). Ethanol induces apoptotic neuronal death at specific developmental stages, particularly during the brain-growth spurt, which occurs from the beginning of third trimester of gestation and continues for several years after birth in humans, whilst occuring in the first two postnatal weeks in mice. Administration of a single dose of ethanol in 7-d postnatal (P7) mice triggers activation of caspase-3 and widespread apoptotic neuronal death in the forebrain, providing a possible explanation for the microencephaly observed in human FAS. The present study was aimed at determining whether nicotinamide may prevent ethanol-induced neurodegeneration. METHODS AND FINDINGS: P7 mice were treated with a single dose of ethanol (5g/kg), and nicotinamide was administered from 0 h to 8 h after ethanol exposure. The effects of nicotinamide on ethanol-induced activation of caspase-3 and release of cytochrome-c from the mitochondria were analyzed by Western blot ( n = 4–7/group). Density of Fluoro-Jade B–positive cells and NeuN-positive cells was determined in the cingulated cortex, CA1 region of the hippocampus, and lateral dorsal nucleus of the thalamus ( n = 5–6/group). Open field, plus maze, and fear conditioning tests were used to study the behavior in adult mice ( n = 31–34/group). Nicotinamide reduced the activation of caspase-3 (85.14 ± 4.1%) and the release of cytochrome-c (80.78 ± 4.39%) in postnatal mouse forebrain, too. Nicotinamide prevented also the ethanol-induced increase of apoptosis. We demonstrated that ethanol-exposed mice showed impaired performance in the fear conditioning test and increased activity in the open field and in the plus maze. Administration of nicotinamide prevented all these behavioral abnormalities in ethanol-exposed mice. CONCLUSIONS: Our findings indicate that nicotinamide can prevent some of the deleterious effects of ethanol on the developing mouse brain when given shortly after ethanol exposure. These results suggest that nicotinamide, which has been used in humans for the treatment of diabetes and bullous pemphigoid, may hold promise as a preventive therapy of FAS

    Evaluation of Cell Cycle Arrest in Estrogen Responsive MCF-7 Breast Cancer Cells: Pitfalls of the MTS Assay

    Get PDF
    Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly synthesized DNA using 5-ethynyl-2′-deoxyuridine (EdU) nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the cells are still viable and potential treatments utilizing these pathways may contribute to drug resistant cells. These experiments demonstrate how the combined measurement of metabolic activity and DNA labeling provides a more reliable interpretation of cancer cell response to treatment regimens

    Short Stat5-Interacting Peptide Derived from Phospholipase C-β3 Inhibits Hematopoietic Cell Proliferation and Myeloid Differentiation

    Get PDF
    Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN). Our recent study found that phospholipase C (PLC)-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT) accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998) suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies

    HAP2(GCS1)-Dependent Gamete Fusion Requires a Positively Charged Carboxy-Terminal Domain

    Get PDF
    HAP2(GCS1) is a deeply conserved sperm protein that is essential for gamete fusion. Here we use complementation assays to define major functional regions of the Arabidopsis thaliana ortholog using HAP2(GCS1) variants with modifications to regions amino(N) and carboxy(C) to its single transmembrane domain. These quantitative in vivo complementation studies show that the N-terminal region tolerates exchange with a closely related sequence, but not with a more distantly related plant sequence. In contrast, a distantly related C-terminus is functional in Arabidopsis, indicating that the primary sequence of the C-terminus is not critical. However, mutations that neutralized the charge of the C-terminus impair HAP2(GCS1)-dependent gamete fusion. Our results provide data identifying the essential functional features of this highly conserved sperm fusion protein. They suggest that the N-terminus functions by interacting with female gamete-expressed proteins and that the positively charged C-terminus may function through electrostatic interactions with the sperm plasma membrane

    The Potential Role of ORM2 in the Development of Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is the third most common malignancy in the world. The risk of death is closely correlated to the stage of CRC at the time of primary diagnosis. Therefore, there is a compelling need for the identification of blood biomarkers that can enable early detection of CRC. We used a quantitative proteomic approach with isobaric labeling (iTRAQ) to examine changes in the plasma proteome of 10 patients with CRC compared to healthy volunteers. Enzyme-Linked Immunosorbnent Assay (ELISA) and Western blot were used for further validation. In our quantitative proteomics analysis, we detected 75 human plasma proteins with more than 95% confidence using iTRAQ labeling in conjunction with microQ-TOF MS. 9 up-regulated and 4 down-regulated proteins were observed in the CRC group. The ORM2 level in plasma was confirmed to be significantly elevated in patients suffering from CRC compared with the controls. ORM2 expression in CRC tissues was significantly increased compared with that in corresponding adjacent normal mucous tissues (P<0.001). ITRAQ together with Q-TOF/MS is a sensitive and reproducible technique of quantitative proteomics. Alteration in expression of ORM2 suggests that ORM2 could be used as a potential biomarker in the diagnosis of CRC

    The human epidermal growth factor receptor (EGFR) gene in European patients with advanced colorectal cancer harbors infrequent mutations in its tyrosine kinase domain

    Get PDF
    ABSTRACT: BACKGROUND: The epidermal growth factor receptor (EGFR), a member of the ErbB family of receptors, is a transmembrane tyrosine kinase (TK) activated by the binding of extracellular ligands of the EGF-family and involved in triggering the MAPK signaling pathway, which leads to cell proliferation. Mutations in the EGFR tyrosine kinase domain are frequent in non-small-cell lung cancer (NSCLC). However, to date, only very few, mainly non-European, studies have reported rare EGFR mutations in colorectal cancer (CRC). METHODS: We screened 236 clinical tumor samples from European patients with advanced CRC by direct DNA sequencing to detect potential, as yet unknown mutations, in the EGFR gene exons 18 to 21, mainly covering the EGFR TK catalytic domain. RESULTS: EGFR sequences showed somatic missense mutations in exons 18 and 20 at a frequency of 2.1% and 0.4% respectively. Somatic SNPs were also found in exons 20 and 21 at a frequency of about 3.1% and 0.4% respectively. Of these mutations, four have not yet been described elsewhere. CONCLUSIONS: These mutation frequencies are higher than in a similarly sized population characterized by Barber and colleagues, but still too low to account for a major role played by the EGFR gene in CRC.Peer reviewe
    corecore